SHIVALIK BEHROR MEDICAL/IIT-JEE PRE-FOUNDATION
 CLASS XII Appearing (LESSON II ${ }^{\text {nd }}$) SOLUTIONS SUBJECT- Chemistry

Brass:-
$>$ German silver:- Mixture of $\mathrm{Cu}+\mathrm{Zn}+\mathrm{Ni}$
$>$ Bronze:- Mixture of $\mathrm{Cu}+\mathrm{Sn}$

1 Part per million (PPM) of fluoride ions in water prevents tooth decay.

1.5 PPM Causes the tooth to become mottled.

NaF is used in Rat poison.
Solutions:-
Homogeneous mixture of two or more than two components.
The solution of two components is referred to as binary solution.
Binary Solution Solute
Solvent
In binary solutions, solvent is that is that component whose physical state is the same as that of the resulting solution while the other component is called solute.

Example:- 62% Aqueous salt solution

| Solvent | $=$ water |
| :--- | :--- | :--- |
| Solute | $=\quad$ Salt |

For binary solution in which both the components have the same physical state as that of solution, the Excess component is solvent \& other one is solute.

Types of solution:-

Types of solutions	Solute	Solvent	Example
Gaseous	Gas	Gas	Mixture of oxygen and nitrogen gas
Solution	Liquid	Gas	Chloroform mixed with nitrogen gas
	Solid	Gas	Camphor is nitrogen gas
Liquid	Gas	Liquid	Oxygen dissolved in water
	Liquid	Liquid	Ethanol dissolved in water
Solid	Solid	Liquid	Glucose dissolved in water.
	Gas	Solid	Solution of hydrogen in palladium
	Liquid	Solid	Amalgam of mercury with sodium

> | Solid | Solid | Copper dissolved in gold. |
| :--- | :--- | :--- |

Expressing concentration of solutions:-

(A) Qualitatively form of concentration:-
(i) Dilute solution:- When very very small (less) amount of solute present in a solution as compare to solvent that type of solution is known as dilute solution.

Amount of Solute \lll < Amount of solvent
(ii) Concentrated solution:- When less amount of solute or approximate equal amount of solute present in a solution as compare to solvent that type of solution is known as concentrated solution.

Amount of Solute \leq Amount of solvent
(B) Quantitatively form of concentration:-
(i) Mass percentage (w/w\%):- The mass of solute in gram present in 100 gm of solution that is known as mass by mass percentage.

Mass\% of component $=\quad$ Mass of the component in the solutions
Total mass of the solution
Mass\% of Solute $=\quad$ Mass of Solute
X 100
Mass of Solution

Mass of Solvent
X 100
Mass of Solution

Example:- 10% w/w aqueous glucose solution means 10 gram glucose in 100gm solution.

Special Note:- The concentration, term in which volume term is involved, depends upon temperature.
(ii) Volume by volume percentage $\left(\frac{V}{V} \%\right)$:- The volume of solute in ml present in 100 ml of solution is called volume by volume percentage.

Volume percentage of Solute $=$

Volume percentage of Solvent $=$

Volume of solute
X 100
Volume of Solution

Volume of Solvent
X 100
Volume of Solution

Special Point:-

(1) Commercial bleaching solution contains 3.62 mass percentage of sodium hypochloride in water.
(2) A $\mathbf{3 5 \%}\left(\frac{\mathrm{V}}{\mathrm{V}}\right)$ Solution of Ethylene glycol, an antifreeze, is used in cars for cooling the engine. At this concentration the antifreeze lowers the freezing point of water to $255.4 \mathrm{k}\left(-17.6^{\circ} \mathrm{C}\right)$
(iii) Mass by volume\% $\left(\frac{w}{V} \%\right)$ The mass of solute in gm present in 100 ml of solution is called mass by volume percentage.

Mass by Volume \% = Mass of Solute

Volume of Solution
Note:- It is commonly used in medicine and pharmacy.
NCERT 2.1 Calculate the mass percentage of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ if 22 gm if benzene is disslovled in 122gm of carbon tetrachloride.

Sol ${ }^{\mathrm{n}}$ - To be given.

Mass of solute $($ Benzene $)$	$=$	22 gm
Mass of Solvent $\left(\mathrm{CCl}_{4}\right)$	$=$	122 gm

Mass Percentage of solute (Benzene) $=\quad$ Mass of Benzene
X 100
Mass of Solution

$$
=\quad \frac{22}{22+122} \times 100=\frac{2200}{144}=15.28 \%
$$

Mass Percentage of Solvent $\left(\mathrm{CCl}_{4}\right)$

$$
\begin{aligned}
& =\quad \frac{\text { mass of } \mathrm{CCl}_{4}}{\text { mass of solution }} \times 100 \\
& =\quad \frac{122}{22+122} \times 100=\frac{122}{144} \times 100=84.73 \%
\end{aligned}
$$

(iv) Parts per million (ppm):-

Solute peresnt in very- very small quantities
PPM $=\frac{\text { amount of solute }}{\text { solution }} \times 10^{6}$

Special Point:-
(1) The concentration of pollutants in water or atmosphere is often expressed in terms of $\mu \mathrm{g} \mathrm{ML}{ }^{-1}$ or PPM.
(2) 1 litre $=1030 \mathrm{gm}$.
(v) Mole fraction (x) :-

Mole fraction may be defined as the ratio of number of moles of one component of the total number of moles of all the components present in the solution.

Suppose	Number of moles in solute $=\mathrm{n}$
	Number of moles in a solvent $=\mathrm{N}$

Mole fration of solute $=\frac{n}{n+N}$
Mole fraction of solvent $=\frac{N}{n+N}$
For a binary solution, mole fraction of solute + mole fraction of solvent =1

For a component $0 \leq \chi \leq 1$

(vi) Molarity:- (M):- Number of moles of solute dissolved in one litre (or one cubic decimetre) of solution.

$$
\begin{aligned}
\text { Molarity } & =\frac{\text { moles of solute }}{\text { Volume of solutio in litre }} \\
& =\frac{\text { moles of solute }}{\text { molar mass of solute }} \times \frac{1}{\text { Volume of solution (litre) }} \\
\mathrm{M} & =\frac{\text { moles of solute }}{\text { molar mass of solute }} \times \frac{1000}{\text { Volume of solution }(m l)} \\
\text { Unit } & =\quad \text { Mole lit }{ }^{-1} \text { or mole } \mathrm{dm}^{-3}
\end{aligned}
$$

It depends upon temperature. Increases in temperature will decrease molarity.
If molarity is defined at fixed $0^{\circ} \mathrm{C}$ temperature, it also known as Demal unit.
Example:- $\quad 1$ Demal (D) means 1 mole solute in 1 lit. solution at $0^{\circ} \mathrm{C}$
(vii) Molality:- (m): Number of moles of Solute dissolved in $1 \mathrm{~kg}(100 \mathrm{gm})$ of solvent.

M	$=\frac{\text { moles of solute }}{\text { mass of solvent }(\mathrm{kg})}$
M	$=\frac{\text { Mass of solute }}{\text { molar mass of solute }} \mathrm{X} \frac{1000}{\text { mass of solvent (gm) }}$
Unit	$=\quad$ mole Kg^{-1}

It is temperature independent term.

Special Point:-

(1) Molarity of dilute solution

Before dilution after dilution
$\mathrm{M}_{1} \mathrm{~V}_{1} \quad=\quad \mathrm{M}_{2} \mathrm{~V}_{2}$
(2) Molarity of mixing:-
$\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}+\mathrm{M}_{2} \mathrm{~V}_{3}=\mathrm{M}\left(\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}\right)$

NCERT:-
Example:- 2.1 Calculate the mole fraction of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ in a solution containing 20% of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ by mass.

Solv:- $\quad 20 \%$ of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ by mass means
Mass of solute $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)=20 \mathrm{gm}$
Mass of solution $=100 \mathrm{gm}$
Mass of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)=80 \mathrm{gm}$
Molar mass of solute $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)=12 \times 2+1 \times 6+16 \times 2$
$=24+6+32$
$=62 \mathrm{gm} \mathrm{mol}^{-1}$

$$
\begin{aligned}
& \text { molar mass of solvent }\left(\mathrm{H}_{2} \mathrm{O}\right)=1 \times 2+16=18 \mathrm{gm} \mathrm{~mol}^{-1} \\
& \text { moles of solute }\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)= \\
& \begin{aligned}
\text { molar mass of solute }
\end{aligned} \\
& \qquad \begin{aligned}
\text { Mol } \frac{20}{62}=0.322 \mathrm{~mol} .
\end{aligned} \\
& \\
& \text { Moles of solvent }\left(\mathrm{H}_{2} \mathrm{O}\right) \\
& =\frac{\text { mass of solvent }}{\text { molar mass of solvent }} \\
&
\end{aligned}
$$

Mole fraction of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)=$

$$
\begin{aligned}
\chi_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}} & =\frac{\text { moles of } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}}{\text { moles of } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}+\text { moles of water }} \\
\chi_{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}} & =\frac{0.322}{0.322+4.444}=\frac{0.322}{4.766}=0.932
\end{aligned}
$$

NCERT:-

Example:- 2.1 Calculate the molarity of a solution containing 5 gm of NaOH in 450 ml . solution.

$$
\begin{array}{ll}
\text { Solv:- } & \text { To be given } \mathrm{M}=? \\
& \text { Mass of solute }(\mathrm{NaOH})=5 \mathrm{gm} \\
& \text { Volume of solution }=450 \mathrm{ml} \\
& \text { Molar mass of solute }(\mathrm{NaOH})=23+16+1=40 \mathrm{gm} \mathrm{~mol}^{-1} \\
\mathrm{M} & =\frac{\text { mass of solute }}{\text { molar mass of solute }} \times \frac{1000}{\text { volume of solution }(\mathrm{ml})} \\
\mathrm{M} \quad & =\frac{5}{40} \times \frac{1000}{450}=\frac{50}{4 \times 45} \\
& =\frac{10}{4 \times 9}=\frac{10}{36}=0.278 \mathrm{M} \\
& =0.278 \mathrm{~mol} \mathrm{lit}^{-1} \\
& =0.278 \mathrm{moldm}^{-3}
\end{array}
$$

NCERT:-
Example:- $2.3 \quad$ Calculate molality of 2.5 gm of Ethaonic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in 75 gm of benzene.

Solv:- \quad To be given $m=$?
mass of solute $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=2.5 \mathrm{gm}$
Volume of solvent (Benzene) $=75 \mathrm{gm}$
Molar mass of solute $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=12 \times 2+1 \times 4+16 \times 2$

$$
=24+4+32
$$

$$
=60 \mathrm{gm} \mathrm{~mol}^{-1}
$$

$\mathrm{m}=\frac{\text { mass of solute }}{\text { molar mass of solute }} \times \frac{1000}{\text { mass of solvent }(\mathrm{gm})}$
$=\frac{2.5}{60} \mathrm{X} \frac{1000}{75}$

$$
\begin{aligned}
& =\frac{25000}{60 \times 750}=\frac{250}{6 \times 75}=\frac{10}{6 \times 3} \\
& =\frac{10}{18}=0.556 \mathrm{~mol} \mathrm{Kg}^{-1} \\
& = \\
& 0.556 \mathrm{~m}
\end{aligned}
$$

$>$ Solubility:- Maximum amount of solute substance that can be dissolved in a specified amount of solvent at a specified temperature.

* Its depend upon the nature of soluate and solvent, as well as temperatue and pressure.
(A) Soubility of a solid in a liquid:-

Solute $=$ solid
Solvent = liquid
Three type of solution.
(1) Saturated solution:- A Solution in which no more solute can be dissolved at some temperature and pressure is called saturated solution.
i.e. concentration of solute remains constant.
(2) Unsaturated solution:- Solution in which more solute can be dissolved at same temperature and pressure.
(3) Super saturated solution:- When more solute can be dissolved at higher temperature in a saturated solution, then the solution becomes super saturated.
$>$ Dissolution:- When a solid solute is added to the solvent, some solute dissolves and its concentration increases in solution. This process in called dissolution.
> Crystallization:- Some solute particles collide with solute particles in solution and get separated out. This process is called crysallization
$>$ Factor affecting of solubility of solid in liquid:-
(1) Nature of solute and solvent:- Polar solute dissolves in polar solvent and non polar solute in non polar solvent.

Example:- NaCl and sugar dissolves readily in water and naphthalene and anthracene dissolves readily in benzene.
(2) Effect of temperature:- In general, if an a nearly saturated solution, the dissolution process in endothermic $\left(\Delta \mathrm{H}_{\mathrm{sol}}>\mathrm{O}\right)$, the solubility should increase with with rise in temperature. If it is exothermic $\left(\Delta \mathrm{H}_{\mathrm{sOI}}<\mathrm{O}\right)$, the solubility should decrease with rise in temperature.
(3) Effect of pressure:- Solid and liquids are higly Incompressible, so pressure does not have any significant effect on solubility of solids and liquids.
> (B) Solubility of gas in liquid:-

Solute	$=$	gas
Solvent	$=$	liquid

Factor affecting of solubility of gas in liquid:-
(1) Nature of gas
(2) Temperature
(3) Pressure
(1) Nature of gas:- Generally, the gases which can be easily liquified are more soluble in common solvents. For CO_{2} is more soluble than hydrogen or oxygen in water.

The gases which are capable of forming ions in aqueous solutions are much more soluble in water than other solvents.

Example:- HCl and NH_{3} are highly soluble in water but not in organic solvents like Benzene in which they do not ionize.
(2) Effect of temperature:-

(3) Effect of pressure:-

Henery's Law:- The solubility of a gas in a liquid is directly proporational to the pressure of the gas over the solution at a definite temperature.
\& "The partial pressure of the gas in Vapour phase (P) is proportional to the mole fraction of the gas (χ) in the solution.

Special Point:- K_{H} values for both N_{2} and O_{2} increase with increase of temperature indicating that the solubility of gases increase with decrease of temperature. It is due to
this reason that Aquatic species are more comfortable in cold waters rather than in warm waters.
> Most gases obey Henry's Law provided:-
(1) Pressure is not too high.
(2) Temperature is not too low
(3) Gas is not highly soluble and does not chemically react with solvent.
> Application of Henry's Law :-
(1) To increase the solubility of CO_{2} is soft drinks and soda water, the bottle is Sealed under high pressure.
(2) At high altitudes the partial pressure of oxygen is less than that at the ground level. This leads to low concentrations of oxygen in the blood and tissues of people living at high altitudes or climbers. Low blood oxygen causes climbers to become weak and unable to think clearly, symptoms of a condition known as anoxia.
(3) Scuba divers must cope with high concentration of dissolved gases while breathing air at high pressure underwater. increased pressure increases the solubility of atmospheric gases in blood. When the divers come towards surface, the pressure gradually decreases. this releases the dissolved gases and leads to the information of bubbles of nitrogen in the blood. This blocks capillaries and creates a medical condition known as bends. Which are painful and dangerous to life. To avoid bends as well as, the toxic effects of high concentrations of nitrogen in the blood, the tanks used by scuba divers are filled with air diluted with helium.
(11.7\% Helium + 56.2\% nitrogen and 32.1 \% oxygen)
$>$ Vapour pressure :- it is the pressure exerted by vapour on the surface layer of liquid at equilibrium between vapour and liquid.

Raoult's law, for a solution of volatile liquids :- The partial vapour pressure of each component is directly proportional to its mole fraction (in the solution)

For component A
For component B
$P_{A} \propto \chi_{A}$
$P_{B} \alpha \chi_{B}$
$P_{A}=P_{A}^{0} \chi_{A}$

$$
P_{B}=P_{B}^{0} \chi_{B}
$$

$\mathrm{P}_{\mathrm{A}}^{0}=$ Vapour pressure of pure component A
$P_{B}^{0}=$ Vapour pressure of pure component B

According to Dalton's law of partial Pressures :-
The total pressure over the solution phase in the container will be the sum of the partial pressures of the components of the solution.
$P_{\text {total }}=P_{A}+P_{B}$

$$
\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}^{0} \chi_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{0} \chi_{\mathrm{B}}
$$

The composition of vapour phase in equilibrium with the solution is determined by the partial pressures of the components. If y, and y_{2} are the mole fraction of the components A and B is respectively in the vapour phase then using Dalton's law of partial pressures.
$P_{A}=y_{A} P_{\text {total }}$
$P_{B}=y_{B} P_{\text {total }}$
Question :- Vapour pressure of chloroform $\left(\mathrm{CHCl}_{3}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at 298K are 200 mmHg and 415 mmHg respectively.
(i) Calculate the vapour pressure of solution prepared by mixing 25.5 gm of CHCl_{3} and $40 \mathrm{gm} \mathrm{CH} 2 \mathrm{Cl}_{2}$ at 298k.
(ii) mole fractions of each component in vapour phase.

Solution :- To be given
$\mathrm{T}=298 \mathrm{k}$
$\mathrm{P}^{0} \mathrm{CHCl}_{3}=200 \mathrm{mmHg}$
$\mathrm{P}^{0} \mathrm{CH}_{2} \mathrm{Cl}_{2}=415 \mathrm{mmHg}$
gm weight of $\mathrm{CHCl}_{3}=25.5 \mathrm{gm}$
gm weight of $\mathrm{CH}_{2} \mathrm{Cl}_{2}=40 \mathrm{gm}$

$$
\begin{aligned}
& \mathrm{P}_{\text {total }}=? \\
& \mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{CHCl}_{3}}+\mathrm{P}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}
\end{aligned}
$$

Raoult's Law
$P_{\mathrm{CHCl}_{3}} \propto \chi_{\mathrm{CHCl}_{3}}$
$\mathrm{P}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \alpha \chi_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$
$P_{\text {CHCl }_{3}}=\mathrm{P}^{0} \mathrm{CHCl}_{3} \chi_{\mathrm{CHCl}_{3}}$
$\mathrm{P}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}=\mathrm{P}^{0} \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \chi_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$
$\chi_{\text {CHCl }_{3}}=\frac{\text { mole of } \mathrm{CHCl}_{3}}{\text { mole of } \mathrm{CHCl}_{3}+\mathrm{CH}_{2} \mathrm{Cl}_{2}}$
$\chi_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}=\frac{\text { mole of } \mathrm{CH}_{2} \mathrm{Cl}_{2}-}{\text { mole of } \mathrm{CHCl}_{3}+\mathrm{CH}_{2} \mathrm{Cl}_{2}}$
mole of $\mathrm{CHCl}_{3}=$ \qquad gm weight of CHCl_{3} $+$
molecular wight of $\mathrm{CHCl}_{3}=12+1+35.5 \times 3=119.5 \mathrm{gm} \mathrm{mol}^{-1}$.
Mole of $\mathrm{CHCl}_{3}=\frac{25.5}{119.5}=.21 \mathrm{~mol}$
Mole of $\mathrm{CH}_{2} \mathrm{Cl}_{2}=\frac{\mathrm{gm} \text { weight of } \mathrm{CH}_{2} \mathrm{Cl}_{2}}{\text { molecular weight of } \mathrm{CH}_{2} \mathrm{Cl}_{2}}$.
molecular weight of $\mathrm{CH}_{2} \mathrm{Cl}_{2}=12 \times 1+1 \times 2+2 \times 35.5$

$$
=85 \mathrm{gm} \mathrm{~mol}^{-1}
$$

mole of $\mathrm{CH}_{2} \mathrm{Cl}_{2}=\frac{40}{85}=.47$ mole

$$
\begin{aligned}
& \chi_{\mathrm{CHCl}_{3}}=\frac{.21}{.21+.47} \quad \chi_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}=\frac{.21}{.21+.47} \\
& =\frac{.21}{.68}=.31 \\
& =\frac{.47}{.21+.47}=.69 \\
& P_{\text {CHCl }_{3}}=\mathrm{P}^{0} \mathrm{CHCl}_{3} \chi_{\mathrm{CHCl}_{3}} \\
& =200 \times .31=62 \mathrm{mmHg} \\
& \mathrm{P}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}=\mathrm{P}^{0} \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \chi_{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \\
& =415 \mathrm{x} .69=286.35 \mathrm{mmHg} \\
& \mathrm{P}_{\text {total }}=P_{\mathrm{CHCl}_{3}}+\mathrm{P}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \\
& =62+286.35 \\
& =348.35 \mathrm{mmHg}
\end{aligned}
$$

(ii) $P_{\mathrm{CHCl}_{3}}=Y_{\mathrm{CHCl}_{3}} \mathrm{P}_{\text {total }} \quad \quad \mathrm{P}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}=\mathrm{Y}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \mathrm{P}_{\text {total }}$

$$
\begin{array}{lr}
Y_{\text {CHCl }_{3}}=\frac{P_{\mathrm{CHCl}_{3}}}{\mathrm{P} \text { कुल }} & \mathrm{Y}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}=\frac{\mathrm{P}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}}{\mathrm{P} \text { कुल }} \\
=\frac{.62}{348.35}=.1779 & =\frac{286.35}{348.35}=0.8220
\end{array}
$$

Ques :- Heptane and octane form an ideal solution. At 373k, the vapour pressures of the two liquid components are 105.2 Kpa and 46.8 Kpa respectively. What will be the vapour pressure of a mixture of 26.0 gm of heptane and 35 gm of octane ?

Ans :- To be given
$\mathrm{T}=373 \mathrm{k}$
$\mathrm{P}^{0}{ }_{\mathrm{C}_{7} \mathrm{H}_{16}}=105.2 \mathrm{kpa}$
$\mathrm{P}^{0}{ }_{\mathrm{C}_{8} \mathrm{H}_{18}}=46.8 \mathrm{kpa}$
gm weight of $\mathrm{C}_{7} \mathrm{H}_{16}=26 \mathrm{gm}$
gm weight of $\mathrm{C}_{8} \mathrm{H}_{18}=35 \mathrm{gm}$
P mixture = ?
P Mixture $=\mathrm{P}_{\mathrm{C}_{7} \mathrm{H}_{16}}+\mathrm{P}_{\mathrm{C}_{8} \mathrm{H}_{18}}$
Raoult's law

$$
\begin{align*}
& \mathrm{P}_{\mathrm{C}_{7} \mathrm{H}_{16}} \alpha \chi_{\mathrm{C}_{7} \mathrm{H}_{16}} \quad \mathrm{P}_{\mathrm{C}_{8} \mathrm{H}_{18}} \alpha \chi \mathrm{C}_{8} \mathrm{H}_{18} \\
& \mathrm{P}_{\mathrm{C}_{7} \mathrm{H}_{16}}=\mathrm{P}^{0}{ }_{\mathrm{C}_{7} \mathrm{H}_{16}} \chi_{\mathrm{C}_{7} \mathrm{H}_{16}} \ldots \ldots . \text { (i) } \tag{i}
\end{align*} \mathrm{P}_{\mathrm{C}_{8} \mathrm{H}_{18}}=\mathrm{P}^{0}{ }_{\mathrm{C}_{8} \mathrm{H}_{18} \chi_{\mathrm{C}_{8} \mathrm{H}_{18}} \ldots \ldots \text { (ii) }} \chi_{\mathrm{C}_{7} \mathrm{H}_{16}}=\frac{\text { mole of } \mathrm{C}_{2} \mathrm{H}_{16}}{\text { mole of } \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{8} \mathrm{H}_{18}} \quad \chi_{\mathrm{C}_{8} \mathrm{H}_{18}}=\frac{\text { mole of } \mathrm{C}_{8} \mathrm{H}_{18}}{\text { mole of } \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{8} \mathrm{H}_{18}} .
$$

molecular weight of $\mathrm{C}_{7} \mathrm{H}_{16}=12 \times 7+1 \times 16=84+16=100 \mathrm{gm} \mathrm{mol}^{-1}$
molecular weight of $\mathrm{C}_{8} \mathrm{H}_{16}=12 \times 8+1 \times 18=114 \mathrm{gm} \mathrm{mol}^{-1}$

$$
\begin{aligned}
\text { mole of } \mathrm{C}_{7} \mathrm{H}_{16} & =\frac{\text { gm weight of }}{\text { molecular weig }} \\
& =\frac{26}{100}=.26 \text { mole }
\end{aligned}
$$

mole of $\mathrm{C}_{8} \mathrm{H}_{18}=$ \qquad
molecular weight $\mathrm{C}_{8} \mathrm{H}_{18}$

$$
=\frac{34}{114}=.31 \mathrm{~mole}
$$

$$
\chi_{\mathrm{C}_{7} \mathrm{H}_{16}}=\frac{.26}{.26+.31}=\frac{.26}{.57}=.46 \quad \chi_{\mathrm{C}_{8} \mathrm{H}_{18}}=\frac{.31}{.26+.31}=\frac{.31}{.57}=.54
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{C}_{7} \mathrm{H}_{16}} & =\mathrm{P}^{0}{ }_{\mathrm{C}_{7} \mathrm{H}_{16}} \chi_{\mathrm{C}_{7} \mathrm{H}_{16}} & \mathrm{P}_{\mathrm{C}_{8} \mathrm{H}_{18}} & =\mathrm{P}^{0}{ }_{\mathrm{C}_{8} \mathrm{H}_{18}} \chi_{\mathrm{C}_{8} \mathrm{H}_{18}} \\
& =105.2 \mathrm{x} .46=48.39 \mathrm{kpa} & & =46.8 \times .54=25.27 \mathrm{kpa}
\end{aligned}
$$

$$
\begin{aligned}
& \text { P mixture }=\mathrm{P}_{\mathrm{C}_{7} \mathrm{H}_{16}}+\mathrm{P}_{\mathrm{C}_{8} \mathrm{H}_{18}} \\
& =48.39+25.27=73.66 \mathrm{kpa}
\end{aligned}
$$

Ideal and non - ideal solution :- by combination of two volatile liquids two types of solution may form :- (i) Ideal and (ii) non - ideal solution

Ideal solution :- The solutions which obey Raoult's law over the entire range of concentration and temp. are known as Ideal solution.

* Non - Ideal solution :- When a solution does not obey Raoult's law over the entire range of concentration and temp are known as non Ideal solution.
Non - ideal solutions are of two types (i) Positive deviation (ii) Negative deviation
S.No. Characteristics

Ideal solution

1
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}^{0} \mathrm{~A}_{\mathrm{A}}$
$\mathrm{P}_{\mathrm{B}}=\mathrm{P}^{0}{ }_{B} \chi_{\mathrm{B}}$
(Raoult's law is obeyed)

$$
\Delta \mathrm{H}_{\text {mixture }}=0
$$

(no heat should be obserbed or evolved during mixing)
2
during mixing) (no change in volume during mixing)
$\Delta \mathrm{S}_{\text {mixture }}=$ positive
of Characteristics Positive of non - Ideal deviation solution

$$
\text { D. } \quad \text { D } 0
$$

$\mathrm{P}_{\mathrm{A}} \neq \mathrm{P}^{0}{ }_{\mathrm{A}} \chi_{\mathrm{A}}$
$\mathrm{P}_{\mathrm{B}} \neq \mathrm{P}^{0}{ }_{\mathrm{B}} \chi_{\mathrm{B}}$

$$
P_{A}>P^{0}{ }_{A} X_{A}
$$

(Raoult's law is not obeyed)
$\Delta \mathrm{H}_{\text {mixture }} \neq 0$ (absorb and release heat)

Negative

 deviation$$
\mathrm{P}_{\mathrm{A}}<\mathrm{P}^{0}{ }_{A} X_{A}
$$

$\Delta V_{\text {mixture }} \neq 0 \Delta V_{\text {mixture }}>0 \Delta V_{\text {mixture }}<0$
(Solution may abserb \& release heat)

$$
\Delta \mathrm{S}_{\text {mixture }}=\text { positive } \quad \Delta \mathrm{S}_{\text {mixture }}=\text { positive } \quad \Delta \mathrm{S}_{\text {mixture }}=\text { positive }
$$

$A-A+B-B=A-B$ Solute Solvent Solution (intermolecular force of attraction)
Exam.
n- hexane and n- heptane bromoethane+ chloroethane benzene + toluene chloro benzene + Bromo benzene $\mathrm{CCl}_{4}+\mathrm{SiCl}_{4}$

$A-A+B-B \neq A-B$ Solute Solvent Solution (intermolecular force of attraction)
$A-A+B-B>A-B$
Solute Solvent Solution (intermolecular force of attraction) Exam.
Acetone + Ethanol $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ Acetone $+\mathrm{CS}_{2}$ Acetone + Benzene Ethyl alchol + water $\mathrm{CCl}_{4}+\mathrm{CHCl}_{3}$

$A-A+B-B<A-B$
Solute Solvent Solution (intermolecular force of attraction) Exam.
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{HI}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$

Azeotrope OR Azeotropic Mixture :- Azeotrope are binary mixtures having the same composition in liquid and vapour phase and boil at a constant temperature. In such cases, it is not possible to separate the components by fractional distillation

Non - ideal solution show such type of behaviour.
These are of two types.

1. Maximum boiling Azeotrope :- Such azeotropes have higher boiling point than components.

These azeotropes are formed by those liquid pairs which show negative deviation from ideal behaviour.
Ex. $\mathrm{HCl}\left(\mathrm{B} . \mathrm{P}=85^{\circ} \mathrm{C}\right)+\mathrm{H}_{2} \mathrm{O}\left(\mathrm{B} . \mathrm{P}=100^{\circ} \mathrm{C}\right)=$ Azeotrope B.P. $=>108^{\circ} \mathrm{C}$
2- Minimum boiling Azeotrope :- Such azeotropes have lower b.p. than either of components.

These azeotropes are formed by those liquid pairs which show positive deviation from ideal behaviour :-

Ex. $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{B} \cdot \mathrm{P}=100^{\circ} \mathrm{C}\right)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\left(\mathrm{B} \cdot \mathrm{P}=78.3^{\circ}\right)=\mathrm{BP}\left(78.1^{\circ} \mathrm{C}\right)$
> Colligative properties:- The properties of dilute solution which depends only on number of particles of solute. [molecules or ions] present in the solution and not on their nature are called colligative properties.

Colligative from Lation word, Co means 'together', ligare means 'to bind'.

The important colligative properties are :-

1- Relative lowering of vapour pressure.
2- Elevation of boiling point.
3- Depression of In freezing point.
4- Osmotic pressure.

Sp. Point :- Colligative properties are the properties of only dilute solutions which are supposed to behave as Ideal solutions.
(A) Relative lowering of vapour pressure :-

'Raoult's law for Non - volatile solutes :-

Raoult's law states that the relative lowering of vapour pressure of a solution containing a non volatile solute is equal to the mole fraction of the solute in the solution.

$$
\frac{P_{0}-P_{S}}{P_{0}}=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}}
$$

$P_{0}=$ Vapour pressure of pure solvent
$P_{s}=$ Vapour pressure of Solution
$\mathrm{n}=$ mole of salute
$\mathrm{N}=$ mole of solvent
In case of dilute solution
$\frac{P_{0}-P_{S}}{P_{0}}=\frac{\mathrm{n}}{\mathrm{N}}$
$\mathrm{n}=\frac{\mathrm{w}}{\mathrm{m}}$
$N=\frac{W}{M}$
$\frac{P_{0}-P_{s}}{P_{0}}=\frac{\frac{\mathrm{w}}{\mathrm{m}}}{\frac{\mathrm{W}}{\mathrm{M}}}$
$\frac{P_{0}-P_{S}}{P_{0}}=\frac{\mathrm{w}}{\mathrm{m}} \times \frac{\mathrm{M}}{\mathrm{W}}$
$\mathrm{w}=\mathrm{gm}$ weight of solute
W = gm weight of solvent
$\mathrm{m}=\mathrm{molecular}$ weight of solute
$\mathrm{M}=$ molecular weight of solvent

Ques :- The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A non volatile , non electrolyte solid weighing 0.5 gm when added to 39.0 gm of benzene (molar mass 78 $\mathrm{gm} \mathrm{mol}^{-1}$). Vapour pressure of the solution, then is 0.845 bar. What is the molar mass of the solid substance ?

Ans :- To be given

$$
\begin{aligned}
& \mathrm{P}_{0}=0.850 \mathrm{bar} \\
& \mathrm{w}=0.5 \mathrm{gm} \\
& \mathrm{~W}=39 \mathrm{gm} \\
& \mathrm{M}=78 \mathrm{gm} \mathrm{~mol}^{-1} \\
& \mathrm{P}_{\mathrm{s}}=0.845 \mathrm{bar} \\
& \mathrm{~m}=?
\end{aligned}
$$

Acc. To Raoult's law for dilute solution.
$\frac{P_{0}-P_{S}}{P_{0}}=\frac{\mathrm{w}}{\mathrm{m}} \times \frac{\mathrm{M}}{\mathrm{W}}$
$\frac{0.850-.845}{.850}=\frac{.5 \times 78}{\mathrm{~m} \mathrm{x} \mathrm{39}}$
$\frac{.005}{.850}=\frac{.5 \times 2}{m}$
$\frac{5}{850}=\frac{1}{m}$
$\mathrm{m}=\frac{850}{5}=170 \mathrm{gm} \mathrm{mol}^{-1}$
Ques :- Vapour pressure of water at 293 k is 17.535 mmHg . Calculate the vapour pressure of water at 293 k . When 25 gm of glucose is dissolved in 450 gm of water.

Ans :- To be given

$$
\begin{aligned}
& \mathrm{T}=293 \mathrm{k} \\
& \mathrm{P}_{0}=17.535 \mathrm{mmHg} \\
& \mathrm{w}=25 \mathrm{gm} \\
& \mathrm{~W}=450 \mathrm{gm} \\
& \mathrm{P}_{\mathrm{s}}=? \\
& \mathrm{~m}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=12 \times 6+1 \times 12+6 \times 16=180 \mathrm{gm} \mathrm{~mol}^{-1} \\
& \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=1 \times 2+16=18 \mathrm{gm} \mathrm{~mol}^{-1}
\end{aligned}
$$

Raoult's law for dilute soln.
$\frac{P_{0}-P_{S}}{P_{0}}=\frac{\mathrm{w}}{\mathrm{m}} \times \frac{\mathrm{M}}{\mathrm{W}}$
$\frac{P_{0}}{P_{0}}-\frac{P_{\mathrm{S}}}{P_{0}}=\frac{\mathrm{wM}}{\mathrm{mw}}$
$1-\frac{P_{S}}{P_{0}}=\frac{\mathrm{wM}}{\mathrm{mW}}$
$\frac{P_{S}}{P_{0}}=1-\frac{25 \times 18}{180 \times 450}$
$\frac{P_{S}}{P_{0}}=1-\frac{1}{180}$
$\frac{P_{S}}{P_{0}}=\frac{180-1}{180}$
$\frac{P_{S}}{P_{0}}=\frac{179}{180}$
$\mathrm{P}_{\mathrm{s}}=\frac{179}{180} \times \mathrm{P}_{\mathrm{o}}$
$P_{S}=\frac{179}{180} \times 17.535$
$\mathrm{P}_{\mathrm{s}}=17.432 \mathrm{mmHg}$.
Ques :- Calculate the mass of a non volatile solute (molar mass $40 \mathrm{gm} \mathrm{mol}^{-1}$). Which should be dissolved in 114 gm octane to reduce its vapour pressure to 80%.

Ans :- To be given

$$
\begin{aligned}
& \mathrm{W}=114 \mathrm{gm} \\
& \mathrm{w}=? \\
& \mathrm{~m}=40 \mathrm{gm} \mathrm{~mol}^{-1} \\
& \mathrm{P}_{0}=100 \\
& \mathrm{P}_{\mathrm{s}}=80 \\
& \mathrm{M}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=12 \times 8+1 \times 18=114 \mathrm{gm} \mathrm{~mol}^{-1}
\end{aligned}
$$

Acc. To Raoult's law (non dilute soln)
$\frac{P_{0}-P_{S}}{P_{0}}=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}}$
$\frac{P_{0}-P_{S}}{P_{0}}=\frac{\frac{\mathrm{w}}{\mathrm{m}}}{\frac{\mathrm{w}}{\mathrm{m}}+\frac{\mathrm{W}}{\mathrm{M}}}$
$\frac{100-80}{100}=\frac{\frac{w}{40}}{\frac{w}{40}+\frac{114}{114}}$
$\frac{20}{100}=\frac{\frac{w}{40}}{\frac{w}{40}+1}$
$\frac{1}{5}=\frac{\frac{w}{40}}{\frac{w+40}{40}}$
$\frac{1}{5}=\frac{w}{40} \times \frac{40}{w+40}$
$\frac{1}{5}=\frac{w}{w+40}$
$5 w=w+40$
$4 w=40$
$\mathrm{w}=10 \mathrm{gm}$
(B) Elevation of Boiling point :-

Boiling Point (B.P.) :- Boiling point of a liquid is a characteristic temperature at which its vapour pressure become equal to external atmospheric pressure. For Exam. :- water boils at $373.15 \mathrm{k}\left(100^{\circ} \mathrm{C}\right)$ because at this temperature the vapour pressure of water is 1.013 bar (1 atm).

Sp. Point:- B.P. of a liquid depends upon the atmospheric pressure.

* By increasing atmospheric pressure, B.P. always increase.
\& A liquid boils at relatively low temperature at mountains where atmospheric pressure is low.
* Liquid boils at relatively higher temperature in pressure cooker as well as at sea level where pressure is relatively high.
* Addition of a non - volatile solute in a solvent lowers its vapour pressure and therefore more heat is required to increase the vapour pressure of solution upto atmoshpheric pressure. Thus B.P. of solution is always higher than pure solvent. This increase in B.P. is known as elevation in B.P.

$\mathrm{T}_{\mathrm{b}}=$ Boiling point of pure solvent
$\mathrm{T}_{1}=$ Boiling point of solution
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{1}-\mathrm{T}_{\mathrm{b}}=$ Elevation in B.P.
$\mathrm{P}_{0}=$ Vapour pressure of pure solvent
$\mathrm{P}_{1}=$ Vapour pressure of solution
$\Delta_{p}=$ Lowering of vapour pressure
$\Delta \mathrm{P} \propto \Delta \mathrm{T}_{\mathrm{b}}$
* For dilute solutions the elevation of boiling point $\Delta \mathrm{T}_{\mathrm{b}}$, is directly proportional to the molal concentration of the solute in a solution thus :-
$\Delta \mathrm{T}_{\mathrm{b}} \propto \mathrm{m}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{m}$
* m (molality) in the number of moles of solute dissolved in 1 kg of solvent.
$\mathrm{K}_{\mathrm{b}}=$ Boiling point Elevation Constant
Or molal elevation constant or Ebullioscopic constant
Unit of $\mathrm{K}_{\mathrm{b}}=\mathrm{K} \mathrm{kg} \mathrm{mol}^{-1}$
$\mathrm{m}($ मोललता $)=\frac{\text { mole of solute }}{\text { mass of solvent }(\mathrm{kg})}$
$\mathrm{m}=\frac{\mathrm{n}}{W(k g)}$

$$
\begin{align*}
& \mathrm{m}=\frac{\mathrm{n} \times 1000}{\mathrm{~W}(\mathrm{gm})} \\
& \mathrm{m}=\frac{\mathrm{w} \times 1000}{\mathrm{~m} \times \mathrm{W}(\mathrm{gm})} \tag{2}
\end{align*}
$$

Put the value of m in equation no. 1

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{w} \times 1000}{\mathrm{~mW}(\mathrm{gm})} \quad \text { Or } \quad \mathrm{m}=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{w} \times 1000}{\Delta \mathrm{~T}_{\mathrm{b}} \times \mathrm{W}}
$$

Where $\Delta \mathrm{T}_{\mathrm{b}}=$ Elevation in B.P.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\mathrm{B} . \mathrm{P} . \text { Elevation constant } \\
& \mathrm{w}=\mathrm{gm} \text { weight of solute } \\
& \mathrm{m}=\text { molecular weight of solute } \\
& \mathrm{W}=\text { gm weight of solvent }
\end{aligned}
$$

Ques:- 18 g of glucose (C6H12O6) is dissolved in 1 kg of water in saucepan. At what temperature will water boil at 1.013 bar ? (K_{b} for water is $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)

Sol :- To be given

$$
\begin{gathered}
\mathrm{W}=18 \mathrm{gm} \\
\mathrm{~W}=1 \mathrm{~kg}=1000 \mathrm{gm} \\
\mathrm{~K}_{\mathrm{b}}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \\
\mathrm{P}_{0}=1.013 \mathrm{bar} \\
\mathrm{~T}_{\mathrm{b}}=373.15 \mathrm{k} \\
\mathrm{~T}_{1}=? \\
\Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{X} \frac{\mathrm{w} \times 1000}{\mathrm{~m} \mathrm{x} \mathrm{~W}} \\
\Delta \mathrm{~T}_{\mathrm{b}}=\frac{0.52 \mathrm{kkg} \mathrm{~mol}^{-1} \times 18 \mathrm{gm} \mathrm{x} 1000 \mathrm{gm} \mathrm{~kg}^{-1}}{180 \mathrm{gmol}-1 \times 100 \mathrm{gm}} \\
\Delta \mathrm{~T}_{\mathrm{b}}=\frac{0.52}{10} \mathrm{k} \\
\Delta \mathrm{~T}_{\mathrm{b}}=0.052 \mathrm{k} \\
\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=6 \times 12+1 \times 12+6 \times 16 \\
\quad=180 \mathrm{gm} \mathrm{~mol}{ }^{-1} \\
\Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{T}_{1}-\mathrm{T}_{\mathrm{b}} \\
\mathrm{~T}_{1}=\Delta \mathrm{T}_{\mathrm{b}}+\mathrm{T}_{\mathrm{b}} \\
\mathrm{~T}_{1}=0.052+373.15 \\
\mathrm{~T}_{1}=373.202 \mathrm{k}
\end{gathered}
$$

Ques :- The boiling point of benzene is 353.23 k . When 1.80 gm of a non volatile solute was dissolved in 90 gm of benzene, the boiling point is raised to 354.11 K . Calculate themolar mass of the solute K_{b} for benzene is $2.53 \mathrm{k} \mathrm{kg} \mathrm{mol}^{-1}$.

Solu :- To be given

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{b}}=353.23 \mathrm{k} \\
& \mathrm{~T}_{1}=354.11 \mathrm{k} \\
& \mathrm{w}=1.80 \mathrm{gm} \\
& \mathrm{~m}=\text { ? } \\
& \mathrm{W}=90 \mathrm{~g} \\
& \mathrm{~K}_{\mathrm{b}}=2.53 \mathrm{k} \mathrm{~kg} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{w} \times 1000}{\mathrm{~m} \times \mathrm{W}} \\
& \left(\mathrm{~T}_{1}-\mathrm{T}_{\mathrm{b}}\right)=\frac{\mathrm{K}_{\mathrm{b}} \times \mathrm{w} \times 1000}{\mathrm{~m} \times \mathrm{W}} \\
& \mathrm{~m}=\frac{2.53 \mathrm{kkg} \mathrm{~mol}^{-1} \times 18 \mathrm{gm} \times 1000 \mathrm{gm} \mathrm{~kg}^{-1}}{(354.11-353.23) \mathrm{k} \times 90 \mathrm{gm}} \\
& \mathrm{~m}=\frac{2.53 \times 1.80 \times 1000}{.88 \times 90} \mathrm{gmmol}^{-1} \\
& \mathrm{~m}=\frac{2.53 \times 1800}{.88 \times 90} \\
& =\frac{2.53 \times 20}{.88} \mathrm{gmmol}^{-1} \\
& =\frac{50.6}{.88}=57.5 \mathrm{gmmol}^{-1}
\end{aligned}
$$

(c) Depression of freezing point :-

Freezing point :- The temperature at which the vapour pressure of the substance in its liquid phase is equal to its vapour pressure in the solid phase.
(Freezing point of solvent > freezing point of solution)

$$
\begin{aligned}
& \mathrm{P}_{0}=\text { Vapour pressure of solvent } \\
& \mathrm{P}_{1}=\text { Vapour pressure of solution } \\
& \mathrm{T}_{\mathrm{f}}=\text { Freezing point of pure solvent } \\
& \mathrm{T}_{1}=\text { Freezing point of solution } \\
& \Delta \mathrm{T}_{\mathrm{f}}=\text { Depresion of Freezing point } \\
& \Delta \mathrm{P}=\text { Elevation of Vapur Pressure }
\end{aligned}
$$

For dilute solutions the depression of freezing point $\Delta \mathrm{T}_{\mathrm{f}}$ is directly proportional to the molal concentration of the solute in a solution thus :-

$$
\begin{align*}
& \Delta \mathrm{T}_{\mathrm{f}} \alpha \mathrm{~m} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \mathrm{~m} \tag{1}
\end{align*}
$$

m (molality) is the number of moles of solute dissolved in 1 kg of solvent.
$\mathrm{k}_{\mathrm{f}}=$ Freezing point depression constant
molal depression constant
cryoscopic constant
Unit of $\mathrm{k}_{\mathrm{f}}=\mathrm{k} \mathrm{kg} \mathrm{mol}^{-1}$
m (molality) $=\frac{\text { mole of solute }}{\text { mass of solvent }}$
$\mathrm{m}=\frac{\mathrm{n}}{\mathrm{w}(\mathrm{kg})}$
$\mathrm{m}=\frac{\mathrm{n} \times 1000 \mathrm{gm} \mathrm{kg}^{-1}}{\mathrm{w}(\mathrm{gm})}$
$\mathrm{m}=\frac{\mathrm{w} \times 1000 \mathrm{gm} \mathrm{kg}^{-1}}{\mathrm{~m} \times \mathrm{w}(\mathrm{gm})}$
Put the value of m in equation 1

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{kf} \mathrm{x} \frac{\mathrm{w} \times 1000 \mathrm{gm} \mathrm{~kg}^{-1}}{\mathrm{mw}(\mathrm{gm})} \\
& \mathrm{m}=\frac{\mathrm{kf} \times \mathrm{w} \times 1000 \mathrm{gmkg} \mathrm{~kg}^{-1}}{\Delta \mathrm{~T}_{\mathrm{f}} \times \mathrm{w}(\mathrm{gm})} \\
& \Delta \mathrm{T}_{\mathrm{f}}=\text { Depression in freezing point } \\
& \mathrm{k}_{\mathrm{f}}=\text { Freezing point depression constant } \\
& \mathrm{w}=\text { gm weight of solute } \\
& \mathrm{m}=\text { molwcular weight of solute } \\
& \mathrm{W}=\text { gm weight of solvent }
\end{aligned}
$$

Special Point :- The value of \mathbf{k}_{f} and \mathbf{k}_{b}. Which depend upon the nature of the solvent. Can be calculate this formula.

$$
\begin{aligned}
\mathrm{k}_{\mathrm{f}} & =\frac{\mathrm{R} \mathrm{\times M} \mathrm{\times T}_{f}^{2}}{1000 \times \Delta \mathrm{H}} \\
\mathrm{k}_{\mathrm{b}} & =\frac{\mathrm{R} \times \mathrm{M} \times \mathrm{T}_{\mathrm{b}}^{2}}{1000 \times \Delta \mathrm{H}}
\end{aligned}
$$

$\mathrm{R}=$ gas constant
$\mathrm{M}=$ molar mass of solvent
$\mathrm{K}_{\mathrm{f}}=$ Freezing point of the pure solvent in Kelvin.
$\mathrm{K}_{\mathrm{b}}=$ boiling point of the pure solvent in Kelvin.
$\Delta \mathrm{H}_{\text {Fussion }}=$ Enthaply for the fussion of the solvent
$\Delta \mathrm{H}_{\text {vap }}=$ Enthaply for the vapourisation of the solvent.
Ques :- 1.00 gm of a non - electrolyte solute dissolved in 50 gm of benzene lowered the freezing point of benzene by 0.40 K . The freezing point depression constant of benzene is 5.12 K kg mol-1. Find the molar mass of the solute.

Ans :- To be given

$$
\begin{aligned}
& \mathrm{W}=1.00 \mathrm{gm} \\
& \mathrm{~W}=50 \mathrm{gm} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=0.40 \mathrm{k} \\
& \mathrm{k}_{\mathrm{f}}=5.12 \mathrm{k} \mathrm{~kg} \mathrm{~mol}^{-1} \\
& \mathrm{~m}=? \\
& \mathrm{~m}=\frac{\mathrm{kf} \mathrm{x} \mathrm{w} \times 1000 \mathrm{gm} \mathrm{~kg}^{-1}}{\Delta \mathrm{~T}_{\mathrm{f}} \times \mathrm{w}(\mathrm{gm})} \\
& =\frac{5.12 \mathrm{k} \mathrm{~kg} \mathrm{~mol}}{}{ }^{-1} \times 1.00{\mathrm{gm} \mathrm{x} 1000 \mathrm{gm} \mathrm{~kg}^{-1}}_{0.40 \mathrm{k} \mathrm{x} 950 \mathrm{gm}} \\
& =\frac{5.12 \times 1000}{.40 \times 50} \mathrm{gm} \mathrm{~mol}^{-1} \\
& =\frac{512}{2}=256 \mathrm{gm} \mathrm{~mol}^{-1}
\end{aligned}
$$

Ques :- $\mathbf{4 5} \mathrm{gm}$ of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ is mixed with 600 gm of water. Calculate (a) the freezing point depression and (b) the freezing point of the solution .

Ans :- To be given $\left(\mathrm{k}_{\mathrm{f}}=1.86 \mathrm{k} \mathrm{kg} \mathrm{mol}^{-1}\right)$

$$
\begin{aligned}
\mathrm{w} & =45 \mathrm{gm} \\
\mathrm{~m}=\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right) & =12 \times 2+1 \times 6+16 \times 2 \\
& =24+6+32=62 \mathrm{gm} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\mathrm{W}=600 \mathrm{gm}
$$

$$
\mathrm{kf}=1.86 \mathrm{k} \mathrm{~kg} \mathrm{~mol}^{-1}
$$

$$
\Delta \mathrm{T}_{\mathrm{f}}=\text { ? }
$$

$$
\Delta \mathrm{T}_{1}=?
$$

(i) $\Delta \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{k}_{\mathrm{f}} \times \mathrm{w} \times 1000}{\mathrm{~m} \times \mathrm{w}}$

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{f}}=\frac{1.86 \times 45 \times 1000}{.62 \times 600} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=\frac{1.86 \times 450}{.62 \times 6} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=2.25 \mathrm{k}
\end{aligned}
$$

(ii) $\Delta \mathrm{T}_{\mathrm{f}}=$ Freezing point of solvent - freezing point of solution
$2.25=273.15-$ freezing point of solution
Freezing point of solution $=273.15-2.25$

$$
=270.95 \mathrm{k}
$$

(d) Osmotic Pressure :- Osmosis is the spontaneous flow of the solvent molecules from a less concentrated solution (dilute) to a more concentrated solution through a semi permeable membrane.
Osmotic pressure :- The minimum excess pressure that has to be applied on the solution to prevent the osmosis (entry of the solvent into the solution through the semi permeable membrance.
Semi - Permeable membrance (SPM) :- A membrance that permits the passage of solvent molecules only, not solute molecules is known as SPM.

According to Van't Hoff for dilute solution

$$
\begin{aligned}
& \pi=\mathrm{CRT} \\
& \pi=\frac{\mathrm{n}}{\mathrm{v}} \mathrm{RT} \\
& \pi=\frac{\mathrm{w} \mathrm{RT}}{\mathrm{~m} \times \mathrm{v}} \\
& \pi=\frac{\mathrm{RT}}{\mathrm{~m}} \times \mathrm{d}
\end{aligned}
$$

$\pi=$ Osmotic Pressure
$\mathrm{c}=$ Molar Concentration
$\mathrm{R}=$ gas constant $=0.0821$ lit. atm $\mathrm{k}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=\mathrm{Temp}$.
$\mathrm{n}=$ Number of solute mole
$\mathrm{w}=\mathrm{gm}$ weight of solute
$\mathrm{m}=$ molecular weight of solute
$\mathrm{d}=$ density of solution
$\mathrm{v}=$ volune of solution

Special Point :-

1. This method is widely used to determine molar masses of proteins, polymer and other macromolecules.
2. The osmotic pressure method has the advantage over other methods as pressure measurement is around the room temp. And the molarity of the solution is used instead of molality.
Isotonic solutions :- Two solutions having same osmotic pressure are called isotonic solutions :-

$$
\begin{aligned}
& \pi_{1}=\pi_{2} \\
& C_{1}=C_{2} \\
& \frac{n_{1}}{v_{1}}=\frac{n_{2}}{v_{2}} \\
& \frac{w_{1}}{m_{1} v_{1}}=\frac{w_{2}}{m_{2} v_{2}}
\end{aligned}
$$

Special Point :-

1. In cell numerical problems on osmotic pressure, percentage means weight volume percentage unless density of the solution is given.
2. If a number of solutes are present in the solution. The total osmotic pressure becomes sum of partial osmotic pressure. $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+$ \qquad .

* Two solutions are isotonic at a given temperature when such a solution are separated by semipermeable membrance. No osmosis occurs between them. Osmotic pressure associated with the fluid inside the blood cell is equivalent to that of 0.9% (Mass/volume) Nacl solution called normal saline solution and it is
safe to inject it intravenously. On the other hand, If we place the cells in a solution containing more than 0.9% solution water will flow out of cells and they would shrink. Such a solution is called hypertonic sol. If the salt concentration is less than 0.9% water will flow into the cells and they would swell. Such a solution is called hypotonic sol.

Ques :- A 2\% Sucrose solution is isotonic with $\mathbf{1 . 5 \%}$ solution of an unknown substance calculate molecular mass of the unknown substance.

Ans :- To be given
2% Sucrose solution means
Volume of solution $=100 \mathrm{ml}$
gm weight of solute $=2 \mathrm{gm}$
molecular weight of solute $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)=12 \times 12+1 \times 22+11 \times 16$

$$
\begin{aligned}
& =144+22+176 \\
& =342 \mathrm{gm} \mathrm{~mol}^{-1}
\end{aligned}
$$

1.5% solution of an unknown substance means
volume of solution $=100 \mathrm{ml}$
gm wright of unknown substance $=1.5 \mathrm{~g}$
molecular mass of unknown substance $=$?
acc. To question isotonic solution
$\mathrm{C}_{1}=\mathrm{C}_{2}$
$\frac{\mathrm{n}_{1}}{\mathrm{v}_{1}}=\frac{\mathrm{n}_{2}}{\mathrm{v}_{2}} \quad \therefore \mathrm{~V}_{1}=\mathrm{V}_{2}=100 \mathrm{ml}$
$\mathrm{n}_{1}=\mathrm{n}_{2}$
$\frac{\mathrm{w}_{1}}{\mathrm{~m}_{1}}=\frac{\mathrm{w}_{2}}{\mathrm{~m}_{2}}$
$\frac{2}{342}=\frac{1.5}{m_{2}}$
$\mathrm{m} 2=\frac{1.5 \times 342}{2}=1.5 \times 171=256.5 \mathrm{gm} \mathrm{mol}^{-1}$
Ques :- $\mathbf{2 0 0} \mathrm{cm}^{\mathbf{3}}$ of an aqueous solution of a protein contains 1.26 gm of the protein. The osmotic pressure of such a solution at 300 K is found to be 2.57×10^{-3} bar. Calculate the molar mass of the protein.
Ans :- To be given

$$
\begin{aligned}
& \mathrm{v}=200 \mathrm{~cm}^{3} \quad=200 \mathrm{ml}=.2001 \mathrm{it} \\
& \mathrm{w}=1.26 \mathrm{gm} \quad \mathrm{~T}=300 \mathrm{k} \\
& \pi=2.57 \times 10^{-3} \mathrm{bar} \\
& \mathrm{R}=0.083 \mathrm{~L} \mathrm{bar} \mathrm{~mol}^{-1} \mathrm{k}^{-1} \\
& \pi \mathrm{~V}=\mathrm{nRt} \\
& \pi \mathrm{~V}=\frac{\mathrm{wrt}}{\mathrm{~m}} \\
& \mathrm{~m}=\frac{\mathrm{wrt}}{\pi \mathrm{v}} \\
& \mathrm{~m}=\frac{1.26 \mathrm{gm} \times 0.083 \mathrm{~L}^{-3} \mathrm{bar} \mathrm{~mol}}{}{ }^{-1} \mathrm{k}^{-1} \times 300 \mathrm{k} \\
& 2.57 \times 10^{-3} \mathrm{bar} \times .200 \mathrm{~L} \\
& \mathrm{~m}=\frac{1.26 \times .083 \times 300}{2.57 \times 10^{-3} \times .200} \mathrm{gm} \mathrm{~mol}^{-1} \\
& \mathrm{~m}=\frac{126 \times 83 \times 300 \times 10^{3}}{257 \times 200} \\
& \mathrm{~m}=\frac{126 \times 83 \times 3000}{257 \times 2} \\
& \mathrm{~m}=\frac{10458 \times 1500}{257} \quad=\frac{126 \times 83 \times 1500}{257} \\
& \mathrm{~m}=61038.91 \mathrm{gm} \mathrm{~mol} \\
& \mathrm{~m}^{-1}
\end{aligned}
$$

Application of osmosis :-

1. A raw mango placed in concentrated salt solution loses water via osmosis and shrivel into pickle.
2. Wilted flowers revise when placed in fresh water.
3. Water movement from soil into plant roots and subsequently into upper portion of the plant is partly due to osmosis.
4. The preservation of meat by salting and of fruits by adding sugar protects again bacterial action. Through the process of osmosis, a bacterium on salted meat or sandid fruit loses water, shrivels and dies.

People taking a lot of salt or salty food experience water retention in tissue cells and intercellular spaces because of osmosis. The resulting spaces because of osmosis. The resulting puffiness or swelling is called Edema.
π mixture can be calculated as follows :-
$\pi=\frac{\pi_{1} v_{1}+\pi_{2} v_{2}}{v_{1}+v_{2}}$

$$
\pi=\frac{m_{1} v_{1}+m_{2} v_{2}}{v_{1}+v_{2}} \times R T
$$

Reverse Osmosis :-

The direction of osmosis can be reversed if a pressure larger than the osmotic pressure is applied to the solution side.

OR

Pure solvent flows out of the solution through the semi permeable membrance. Use :- Reverse osmosis is used in diesalination of sea water.

Cellulose acetate semi permeable membrance used in reverse osmosis.

Van't Hoff factor and Abnormal molecular mass :-

When the solute associated or dissociates in solution abnormal results (fro all colligative properties and molar masses) are obtained i.e. experimental value for colligative properties and molar mass deviates from calculated or normal value. This deviation or dissociation or association of solute.
\& To calculate the extent of association or dissociation Van't Hoff in 1886 introduced a factor i called Van't Hoff factor.
\& Van't Hoff factor i is defined as ration of the experimental value of colligative property to the calculated value (normal value) of colligative property.
$i=\frac{\text { Experimental colligative properties (observed) }}{\text { Calculated (normal colligative properties }}$
$i=\frac{\text { No of particles after association or dissociation }}{\text { Experimental molecular mass (observed) }}$

* Using Van't Hoff factor the colligative properties are modified as follows :-

1. Relative lowering of vapour pressure $\frac{P_{0}-P_{s}}{P_{o}}=i \frac{n}{n+N}$
2. Elevation of boiling point $\Delta \mathrm{T}_{\mathrm{b}}=i \mathrm{k}_{\mathrm{b}} \times \mathrm{m}$
3. Depression of melting point $\Delta \mathrm{T}_{\mathrm{f}}=i \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
4. Osmotic pressure $\pi=i$ CRT
\& i may be more, less or equal to unity
$i=1=>$ no dissociation or no association
$i>1$ => in case of dissociation
$i<1=>$ in case of association
Salt
Van't Hoff factor (i) for complete

Dissociation of solute

$\mathrm{NaCl} \quad 2$
$\mathrm{KCl} \quad 2$
$\mathrm{MgSo}_{4} \quad 2$
$\mathrm{K}_{2} \mathrm{So}_{4} \quad 3$
$\mathrm{AlCl}_{3} \quad 4$
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \quad 5$
$\left.\mathrm{K}_{4}[\mathrm{FecCN})_{6}\right] \quad 5$
\& Ethanoic acid (acetic acid) dimerise in benzene due to $\mathbf{H}-$ Bonding. So i is less than.

Relation between Van't Hoff factor \boldsymbol{i} and amount of association (α) :-
Many organic solutes when dissolved in non aqueous (non polar) solvent associates to form a bigger molecule. Thus the no. of molecules decreases and hence colligative properties decrease.
Exam. :- Acetic acid in benzene, chloro acetic acid in naptithalene.
nA
An
10 moles before association
$1-\alpha \quad \frac{\alpha}{n}$ moles after association
Total moles after association $=1-\alpha+\frac{\alpha}{n}$
Total moles before association $=1$
$i=\frac{\text { Total number of moles after association }}{\text { Total number of moles before association }}$
$i=\frac{1-\alpha+\frac{\alpha}{n}}{1}$
$i=1-\alpha+\frac{\alpha}{n}$
$i-1=-\alpha+\frac{\alpha}{n}$
$1-i=\alpha-\frac{\alpha}{n}$
$1-i=\alpha\left(1-\frac{1}{n}\right)$
$1-i=\alpha\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)$
$\alpha=(1-i) \times \frac{\mathrm{n}}{\mathrm{n}-1}$

Relation between Van't Hoff factori and amount of dissociation (α) :-

Some solutes (organic, acid, base, salt) in aqueous solution undergo dissociation in such case no. Of particles increases and hence colligative properties increase.
A_{n} nA
1
0 moles before dissociation
$1-\alpha$
$\mathrm{n}-\alpha$ moles after dissociation

Total moles after dissociation $=1-\alpha+\mathrm{n} \alpha$
Total moles before dissociation $=1$
$i=\frac{\text { Total moles after dissociation }}{\text { Total moles before dissociation }}$
$i=\frac{1-\alpha+n \alpha}{1}$
$i-1=-\alpha+n \alpha$
$1-i=\alpha-\mathrm{n} \alpha$
$1-i=\alpha(1-\mathrm{n})$
$\alpha=\frac{1-i}{1-n}$

Special Point :-

1. Relative lowering of vapour pressure $\alpha \frac{1}{i}$
2. Elecation of boiling point αi
3. Depression of melting point $\alpha \frac{1}{i}$
4. Osmotic pressure αi
